The Emerman Lab combined the small molecule AZD5582, an LRA that activates a noncanonical-NFkB pathway (part of the immflamatory response), with their CRISPR screen. “We discovered that Inhibitor of Growth Family Member (ING3) knockout combined with AZD5582 treatment resulted in enhanced viral reactivation in the J-Lat cells [a type of in vitro T-lymphocyte-based HIV-1 latency model] and a primary CD4+ T cell model of HIV-1 latency,” explained Dr. Emerman. However, the team also had to show that their approach was specifically affecting transcription of the HIV-proviruses – hence, their collaboration with Dr. Derek Janssens of the Henikoff Lab. “We were able to successfully apply CUT&Tag technology in a new, HIV-1 latency context and use it to demonstrate that our screen finding had specificity and potency to the HIV-1 LTR instead of targeting all host promoters,” said Emily. Dr. Janssens emphasized, “when we examined the genome-wide transcriptional response of cells harboring an HIV-provirus to the combination therapies, we found the activation of the HIV-provirus was highly specific. This confirmed our hypothesis that the two pathways we identified through genetic screening really converged to regulate the HIV provirus in a way that is nearly unique in the genome.”
Overall, this project represented a powerful step forward in understanding, and potentially reversing, HIV-1 latency – but as always, more questions remain. “We are interested in understanding how all of the different transcriptional and epigenetic mechanisms interact together to establish and maintain HIV-1 latency,” Emily chimed in. “As a result, we are interested in performing the screen using different LRAs or even combinations of LRAs. Additionally, we are interested to understand if the molecular mechanisms of HIV-1 latency are similar or different in various cell types and primary cells, so we would also like to perform the screen with all of these different variations.” “I think a lot of questions remain,” agreed Dr. Janssens. “This was proof of concept – but can you use combination therapies clinically to reverse HIV latency? [Can] we expand the genetic screening strategy used in this study to identify additional combination therapies that may work even better? Why is the transcriptional mechanism we identified nearly unique to the HIV-provirus?” Dr. Emerman assures me that “others in the lab are testing additional combinations of LRAs in combination with both the epigenetics library and a transcription factor library to explore further leads for latency reversal,” so keep an eye on the Emerman Lab for the answers to these and other questions.
“This work was made possible by an incredible set of collaborators, most of whom are at the Hutch,” concluded Emily. “It has been a great privilege to have many helpful and creative discussions with these collaborators and many others at the Hutch and I am very grateful to be a part of this stimulating scientific community.” Dr. Janssens enthusiastically agreed, “This project was a fun collaboration between multiple labs at the Hutch. The enthusiasm of our collaborators was really inspiring and is part of what makes working at the Hutch so special.”
This work was funded by the National Institutes of Health, the University of Washington Viral Pathogenesis training grant, the National Science Foundation, the Hartwell Foundation, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Allergy and Infectious Diseases, and the Howard Hughes Medical Institute.
Cancer Consortium members Dr. Michael Emerman, Dr. Steven Henikoff, and Dr. Patrick Paddison contributed to this work.
E Hsieh, DH Janssens, PJ Paddison, EP Browne, S Henikoff, M OhAinle, and M Emerman. 2022. A modular CRISPR screen identifies individual and combination pathways contributing to HIV-1 latency. bioRxiv. Online ahead of print.
MEDIA CONTACT
David Patton
Senior Director Content Strategy & User Experience
dpatton@fredhutch.org
M: 425-628-4946
Source: https://www.fredhutch.org/en/news/spotlight/2022/09/ccg-hsieh-bioRxiv.html
"Reproduced with permission - Fred Hutchinson Cancer Research Center "
Fred Hutchinson Cancer Research Center
For more HIV and AIDS News visit...
Positively Positive - Living with HIV/AIDS:
HIV/AIDS News